Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
space science 太空科學 / astronomy 天文科學
#1
space science 太空科學 / astronomy 天文科學
www.forum4hk.com/viewthread.php?tid=14623968

黑洞 Black hole
www.forum4hk.com/viewthread.php?tid=21164

earth science 地球科學
www.forum4hk.com/viewthread.php?tid=14618161

超級強子撞擊機 Large Hadron Collider,LHC 模擬宇宙大爆炸
www.forum4hk.com/viewthread.php?tid=12543

霍金的宇宙 Stephen Hawking's universe
www.forum4hk.com/viewthread.php?tid=13920

Space science: everything starts here
https://www.youtube.com/watch?v=TZaMh5H4zdw
[youtube]TZaMh5H4zdw[/youtube]
Reply
#2
國際天文合作組織公布銀河系中心超巨型黑洞照片 由三百名科學家合製
https://news.tvb.com/world/627e53a3e774f...8%E8%A3%BD

拍下歷來首張黑洞照片的國際天文合作組織,再公布一張位於銀河系中心超巨型黑洞照片。

距離我們26,000光年的銀河系中心,有一個最大黑洞「人馬座A*」,這張照片由世界各地80個機構、共300名科學家合作製成。用全球各地八座太空望遠鏡,就好像一座地球大小的巨型虛擬望遠鏡,同時觀測黑洞。相片是第一張銀河系黑洞存在的直接觀測證明,亦是繼2019年拍下M87星系黑洞後,第二張黑洞照片。

專家指黑洞呈環狀發光,是因為被吸引的物質圍繞黑洞高速旋轉,而加熱至極高溫度。至於中央的黑色部分,位於黑洞的事件視界內,在這個範圍內即使是速度最快的光,也無法逃離黑洞的吸引力,所以呈現黑色。

國際天文合作組織「事件視界望遠鏡」2017年起,開始觀測「人馬座A*」及M87星系黑洞。「人馬座A*」離地球較近,但直徑較小,變化迅速,觀測難度較大。

銀河系中心超大質量黑洞照片公布 距地球2萬6千光年
https://news.rthk.hk/rthk/ch/component/k...220513.htm

[Image: mfile_1648299_1_L_20220513010033.jpg]
照片由分布在地球上的8個射電望遠鏡,組成的一個等效於地球大小的虛擬望遠鏡捕獲。(美聯社)

國際研究團隊公布位於銀河系中心超大質量黑洞的首張照片。

該團隊名為「事件視界望遠鏡合作組織」,參與的科學家之前已觀測到眾多恆星,圍繞銀河系中心一個見不到、質量極大的天體,作出軌道運動,顯示這個被稱作「人馬座A*」的天體,可能是一個黑洞,最新發布的照片提供了首個直接的視覺證據。

照片由分布在地球上的8個射電望遠鏡,組成的一個等效於地球大小的虛擬望遠鏡捕獲。照片中位處銀河系中心的黑洞,距離地球約2萬6千光年,從地球觀測,黑洞的大小有如從地球觀察月球上一件冬甩。

今次是該合作組織繼2019年發表第一張黑洞照片,拍攝到位於更遙遠星系M87中心的黑洞後,又一次重大突破。
Reply
#3
Particles Unknown:神秘粒子
https://www.youtube.com/watch?v=E7IOE-8dbuo
[youtube]E7IOE-8dbuo[/youtube]
Reply
#4
大陸「中國天眼」 發現外星文明可疑訊號
https://udn.com/news/story/7333/6387464

"中國天眼"發現地外文明可疑信號
http://www.hkcna.hk/docDetail.jsp?id=100...annel=2813

中國科學家發現保存氦-3關鍵物質 月球上總量可滿足地球長遠能源需求
https://news.tvb.com/greaterchina/62ab1b...0%E6%B1%82

中國科學家從月球探測器「嫦娥五號」帶回的月球土壤中再有新發現,找到保存氦-3的關鍵物質,有望實現在常溫下提取。而月球上氦-3的總量,可滿足地球2,600年的能源需求。

嫦娥五號在前年12月,攜帶了約1.73公斤月壤返回地球,針對月壤的研究在近期再有新發現。

中國科學院等研究團隊,對嫦娥五號月壤顆粒中的氦原子進行探測和研究,發現月壤中鈦鐵礦顆粒表面都有一層非晶玻璃,並在玻璃層中發現大量的氦氣泡。

月球上的氦-3主要來自太陽風。由於月球常年受太陽風的輻照,所以儲存了大量的氦-3。

以往研究認為,提取氦-3需要攝氏700度以上高溫,耗能高、速度慢,不利於在月球上原位開採。而最新研究表明,通過機械破碎方法,有望在常溫下提取氣泡形式儲存的氦-3,不需加熱至高溫。

100噸氦-3核聚變產生的能量可以供應全球使用一年,而且氦-3核聚變過程中沒有中子二次輻射危險,更加清潔及可控。

根據月球上鈦鐵礦總量估算,以氣泡形式儲藏的氦-3總量或者高達26萬噸,若全部用於核聚變,可能滿足全球2,600年的能源需求

有研究團隊亦發現,嫦娥五號月壤中發現至少一種含水礦物,但含量不均勻。證明了月壤中存在來自岩漿結晶過程的「水」,說明水在月球晚期岩漿活動過程中不僅存在,而且可能起到非常重要作用。
Reply
#5
內地團隊首發現持續活躍「快速無線電暴」 來自距離地球30億光年矮星系
https://news.tvb.com/greaterchina/62a9c9...F%E7%B3%BB

內地天文研究團隊,透過貴州的無線電望遠鏡,首次發現持續活躍的「快速無線電暴」。

宇宙中存在一種神秘的「快速無線電暴」,能在1毫秒內釋放出太陽一整年才能輻射出的能量。自2007年首次發現以來,科學家一直研究它的物理起源和輻射機制,至今未有定論。

有假說認為,是來自發出高能電磁輻射的中子星,亦有人猜想可能來自外星文明。

由中國科學院國家天文台研究員領導的國際團隊,就利用被稱為「超級天眼」,位於貴州的無線電望遠鏡,發現一個「快速無線電暴」,名為FRB 20190520B,是來自距離地球30億光年的矮星系。

中國科學院國家天文台研究員李菂說:「我們這次找到的是首個持續活躍,就是我們天眼每次去看,它都有信號,它特別忠誠可靠,而且表現出非常奇特的特徵。」

研究成果近日在國際學術期刊《自然》發表。

李菂表示:「證明我們已經能夠站在這個前沿的第一梯隊,它推動我們去建設一個神秘現象的演化圖景。」

造價近12億元人民幣,口徑達到500米的「超級天眼」,是目前全球最大的球面無線電望遠鏡,在去年正式開放給全球天文學家,至今已批准14個國家,共27份國際觀測申請。
Reply
#6
韋伯太空望遠鏡公布首張全彩色圖像
https://news.rthk.hk/rthk/ch/component/k...220712.htm

美國的韋伯太空望遠鏡公布首張全彩色圖像,相信是至今為止,來自宇宙最深處、最詳細的紅外線圖像,包含來自數十億光年星系的光線。

美國總統拜登在白宮一個記者會上公佈圖像。他說,這些圖像提醒世界,美國有能力作出偉大的事情,並提醒美國人民,尤其是兒童,沒有能力未及的範圍。拜登強調,圖像提醒他們可以看到未曾目睹的可能性,去以前無人去過的地方。

太空總署今日會公布其餘的高解像彩色圖像。

造價達到100億美元的韋伯太空望遠鏡,在去年12月發射升空。
Reply
#7
韋伯望遠鏡覓得135億年銀河系
https://orientaldaily.on.cc/content/chin...00180_067/

[Image: 0722-00180-067s1.jpg]
團隊利用詹姆斯韋伯太空望遠鏡數據發現GLASS-z13。

一支國際天文學家團體周三宣布,相信成功利用詹姆斯韋伯太空望遠鏡數據尋獲一個約135億年歷史的銀河系,若獲核實將成為迄今最古老已知星系。

勢成最古老已知星系

美國哈佛-史密森尼天體物理中心的科學家奈杜(Rohan Naidu)表示,透過近紅外線相機(NIR)發現距離地球330億光年的「GLASS-z13」,GLASS-z13中心位置有紅光圍繞,未能確認其實際星系年齡,相信在宇宙大爆炸後的3億年內形成,比已知銀河系早誕生一億年。團隊還發現「GLASS-z11」,但不及GLASS-z13歷史久遠。

研究論文目前已提交至科學期刊,待同儕審核,美國太空總署(NASA)科學部負責人佐布臣(Thomas Zurbuchen)則形容研究看似非常可信。
Reply
#8
中國將種子送上太空 培育超級農作物
https://yahoo-news.com.hk/BBCChineseNews...yptr=yahoo

將種子送往太空短途旅行可幫助科學家培育出能適應氣候變化而茁壯生長的農作物新品種,從而養活全球不斷增長的人口。

初看之下,這大片麥田上生長的小麥和世界上其他麥田隨風搖曳的麥穗沒有什麼差別。其實在中國東北廣袤的田地栽種的這種小麥來頭不小,絶非普通的作物,這是在太空中培育出來的嶄新麥種。

稱為「魯原502」的麥種,為中國種植面積第二大的小麥。這是將小麥種子送到離地球表面340公里的軌道上空培養出來的新品種。在獨特的低重力太空中,而且隔絶在保護地球生命的磁場之外,小麥種子的DNA發生了微妙的變化,產生了更耐旱和更能抗病蟲害的新特性。

有越來越多的重要糧食作物新品種是在環繞地球運行的航天器和太空站上培育出來,魯原502僅是其中一種。在近地球軌道的太空,種子會受到微重力的影響,以及宇宙射線的轟擊所引發的基因變異,此過程稱為太空誘發基因突變,簡稱太空誘變。

雖然某些突變使作物無法發芽繁殖,但也有些突變可能是有益於作物生長。有的作物在基因變異後會變得更強壯,能夠經受較極端的生長環境,有的作物單一植株產量會增多,或生長得較快,或需要的水量會減少。在太空培育的農作物種子被帶回地球後,再經過仔細的篩選和進一步的培育,從而培植出可大面積廣泛種植的品種。

當今世界因氣候變化和糧食供應鏈脆弱,農業生產面臨越來越大的壓力,這使得農作物的種植需要更靠近其食用消費的地區。現在一些科研人員認為,被稱為太空誘變的太空育種法或許能幫助人類開發適應上述新挑戰的農作物品種。

太空人吃的沙拉,是這個人培植的特殊生菜
來自月球的土壤里長出了「了不起的」地球小草
中國太空文化:英國學者解讀寓意和影響
火星探測:三位地球來客同時抵達 各有什麼使命
中國首席太空育種專家、中國農業科學院航天育種研究中心主任劉錄祥說,「太空基因誘變技術產生了美麗的物種變異。」

例如,根據國際原子能總署的數據,魯原502比中國一般小麥品種的產量要高11%,也更耐乾旱,更抗病蟲害。國際原子能總署有一項工作是協調國際合作採用輻射技術培育新的作物品種。

劉錄祥說,「魯原502確實很成功,產量潛力很高,適應性也很強,在各種地區各種自然環境都能種植。」

正因為魯原502對環境的高度適應性使得這種小麥在中國這樣耕種土地和氣候環境豐富多樣的國家廣受農民的喜歡。

根據劉錄祥之說,魯原502隻是中國過去30年培育的200多個經太空誘變的作物品種其一。除小麥外,中國科學家還使用太空誘變技術培育出新的水稻、玉米、大豆、苜蓿、芝麻、棉花、西瓜、西紅柿、甜椒和其他蔬菜等品種。

中國在1987年首次開始農作物太空誘變實驗後,是世界上唯一一個始終使用這項育種技術的國家。從該年始,中國已經數十次將作物種子送上地球軌道。中國科學家於1990年公布第一種經太空培育成功的作物,是一種名叫宇椒1號的甜椒。劉錄祥說,與中國傳統種植的甜椒品種相比,宇椒1號果實較大,抗病能力也更強。

中國在這幾十年已成為全球航天強國,因此有能力將大批的農作物種子送入地球軌道。2006年,中國用「實踐八號」衛星將有史以來最大規模的一批種子和微生物(152種種子和菌種,總重量超過250公斤)送入地球軌道。2022年5月,中國載人神舟13號從中國天河空間站返回,帶回來的還有作太空誘變實驗的12000顆種子,其中包括幾種草料、以及燕麥、苜蓿和真菌。

中國甚至在2020年11月嫦娥5號登月任務中,也載運了一批稻種,經歷了一趟地球和月球的來回之旅。中國新聞報道稱,這些上過月球的水稻種子返回地球後,在實驗田成功栽種獲得收成。

劉錄祥說,「我們因中國強大的太空計劃而獲益匪淺。我們可以利用返回式衛星、高空平台站和載人飛船將種子送上太空,利用這些太空設施來培育改良作物,每年上太空最多可有兩次。」

這些種子的太空之旅,時間從4天到幾個月不等。在太空的特殊環境中,種子和植株都會發生一些變化。首先,高能的太陽粒子和宇宙射線會破壞種子本身的遺傳物質,導致基因變異或染色體畸變,突變還會遺傳給後代。此外,太空的低重力環境也可能導致種子發生某些變化。在微重力環境下發芽和生長的植物其細胞形狀和細胞本身的組織結構上都會發生改變。

大多數情況是,中國科學家先將種子送往太空,再運回地球種植待其發芽。然後對幼苗進行篩選,找出有用的特性比傳統品種更優秀的植株進行培育。中國科學家篩選尋求的基因變異是能夠讓作物生產更大的果實,能減少需水量,有更好的營養結構,還能抗高溫和低溫,以及能抗病蟲害。在某些情況下,罕見的基因突變可以讓作物產量或抗災害力有很大的突破。

研究人員找到最有前途的植株後將作進一步培育,直到最終培育出一種能夠滿足農民需求,效果明顯的改良品種。

新「淘金熱」:在小行星上採礦幫助解決未來地球資源緊缺?
世界糧食日:當你有一天吃上人造雞的時候
科幻變現實 化驗室生成雞肉味道怎麼樣?

不過,儘管當今中國太空誘變技術領先全球,但中國不是第一個進行太空育種實驗的國家。最早開始此技術的是美國和蘇聯的科學家,1975年兩國科學家使用搭乘蘇聯宇宙782衛星進入地球軌道的胡蘿蔔細胞作了最早的太空誘變實驗。

這種實驗方法所依賴的原理與20世紀20年代末已開始的用核輻射誘發基因突變的原理相同。核輻射誘變是指將生命體暴露在核輻射下,以加速生命體DNA的自然突變過程

原理相同,但還是有差別。核輻射誘變使用源自地球本身的伽馬射線、X射線和離子束來引起生命體基因突變,而太空誘變則依賴於散佈在地球軌道太空中的宇宙射線的轟擊。我們地球上的生命因為受到地球磁場和厚實的大氣層的保護,而免於宇宙高能射線的傷害,但在地球軌道上,航天器和衛星則是暴露在宇宙射線輻射中,這些高能射線主要來自太陽。

國際原子能總署和聯合國糧農組織聯合成立的植物育種和遺傳學科的負責人肖巴·西瓦桑卡爾(Shoba Sivasankar)說,太空誘變和核輻射誘變這兩種技術都可以幫助縮短培育新作物品種所需時間,最高可以減半

國際原子能總署位於奧地利維也納東南35公里的塞貝爾斯多夫的核實驗室,是核輻射誘變的全球中心和培訓中心。沒有核設施的合作國家可以將本國的種子、植物插枝或幼苗送到西瓦桑卡爾的團隊接受核輻射。

西瓦桑卡爾說,「讓種子接受核輻射只要幾分鐘,但這需要(對核輻射誘變)有充分的了解及其專業知識。每個品種對輻射都有不同的耐受性。如果給種子的輻射量太高,將種子放在輻射器裏太久,種子的生機就會被摧毀。不會再發芽生長。但要是輻射量不足夠,就不會產生足夠的基因突變,結果繁殖的後代就會和上代一樣。」

聯合國糧農組織和國際原子能總署合作的「糧食和農業核應用司」成立於1964年,植物育種和遺傳學科為其下屬機構。20世紀20年代末,當時的核物理學家利用X射線誘導小麥、玉米、水稻、燕麥和大麥發生基因突變的實驗引起了世界各地植物學家的興趣。到20世紀50年代,大多數發達國家都有了核輻射育種計劃,試驗不僅採用X射線,還試驗用紫外線和伽馬射線作誘變

西瓦桑卡爾說,「當時,歐洲和北美做了很多努力,公布了許多在核輻射誘變幫助下培育的新品種。但在過去的二三十年歐美許多國家放棄了這項技術。特別是美國已經改變方向,採用轉基因技術,即在實驗室中將其他物種的DNA片段插入植物基因組以培育新品種。」

不過核輻射誘變技術也沒有過時。亞太地區的國家對此始終熱情不減,領頭的就是日益自信的中國。中國在繼續填充國際原子能總署的核誘發基因突變作物品種數據庫。目前這個數據庫有3300個以此技術培育成功的農作物品種。

西瓦桑卡爾說,雖然對一些較貧窮的亞洲國家,轉基因技術的成本很高可能是堅持核輻射誘變技術的主要動機,但繼續使用這種被西方基本拋棄的技術還有更多的實際原因。

西瓦桑卡說爾說,「例如,美國工業化的農業會優先考慮的農作物特性是抗蟲性和抗除草劑性之類。轉基因技術在這方面有傑出的表現。但在亞洲國家,情況就大不相同。」

亞洲的農業生產者主要是小農戶,而且農業地理環境也千差萬別,育種者要為這些小農戶培育改良種子,僅僅修改一兩個特性是不夠的。

西瓦桑卡爾說,「亞洲農作物種子需要更複雜的特性,許多與氣候狀況有關,比如要耐熱和耐旱,或者有在貧瘠土地或鹽鹼地生長的能力。就我看來,這是轉基因技術無法實現的。」

中國認為必須改善中國農作物的基因庫。據劉錄祥及其科研團隊之說,到2050年全球人口預計將增加20億,到時想要養活全球暴增的人口,就必須將至關重要的穀物產量提高70%。他的團隊聲稱,亞太地區不斷增長的人口現正面臨糧食短缺的最高風險。

國際原子能總署認為,通過核輻射誘變和太空誘變技術,僅中國一國就培育和引進了與原生作物相比所有關鍵特性都得到改良的800多新品種。

但這裏還有一個問題:如果誘發基因突變在地球上的實驗室中也能實現,那麼將種子送往太空又會有什麼優勢?

劉錄祥承認,將種子送上太空的成本比放入地面輻射器的成本要高。儘管如此,把種子送上太空旅行一趟似乎有明顯的好處,常常產生更有趣的結果。

劉錄祥說,「實際上,我們發現太空誘變的基因突變有效率比在地球實驗室接受伽馬射線要高。在太空中,宇宙射線強度要低很多,而種子暴露在輻射中的時間則要長得多。我們所說的粒子的線性能量傳輸和整體生物效應在太空中比在實驗室接受輻射要高,而種子的損傷率則要低很多。」

劉錄祥說,在地球實驗室的輻射器中,種子會在幾秒鐘內接受50至400個戈瑞(gray,電離輻射吸收劑量單位)的高劑量電離輻射。但在時間長很多的一周太空旅行中,種子所接受的輻射量只有區區的2毫戈瑞(1毫戈瑞等於1戈瑞的千分之一)。他補充說,結果是,多達50%的種子在輻射過量的地面實驗室中無法存活,但是在太空旅行的種子回到地球幾乎都能發芽生長。

劉錄祥說,「兩種技術都很有用,都能幫助我們解決一些非常現實的問題。而且把種子送往太空的機會微乎其微。因此我們不能只依靠太空誘變技術。」

現在,世界其他地區似乎對在太空種植農作物重啟興趣。2020年11月,美國商業太空服務公司NanoRacks公布了將建立環繞地球軌道的太空溫室種植計劃。計劃的目標?在世界面臨日益惡化的氣候變化危機之際,開發更適合養活全人類的新作物品種。

NanoRacks是一家以從國際太空站發射小型衛星而聞名的公司,其太空溫室計劃是與阿拉伯聯合酋長國合作。阿聯酋是一個耕地極少的國家,需要大量進口糧食。

然而,並不是所有的種子從太空返回地球後都能成為新生的超級植物。2020年,歐洲科學家送往國際空間站的一批萵苣種子在返回地球後,生長速度甚至比留在地面上的同類萵苣還要緩慢。

目前許多有關太空種植食物的研究,都是為了幫助太空人在執行太空任務時能自給自足。例如,國際太空站上的太空人自2015年以來一直在種植生菜,並成功收成和食用。2020年發表的一項研究發現,這種太空種植的生菜可以安全食用,並能為太空長期工作者提供寶貴的營養。

全世界各國的航天機構正在構想讓人類重返月球和訪問火星等行星,為太空人種植蔬菜糧食或許是未來長途太空之旅不可或缺的重要部分,但是對於將留在地球上生存的人類,太空食物的意義可能更為重大。

How China is creating new foods in space
https://www.bbc.com/future/article/20220...s-in-space

[ 本帖最後由 Dr.Fat 於 2022-7-26 13:23 編輯 ]
Reply
#9
How China is creating new foods in space
https://www.bbc.com/future/article/20220...s-in-space

Sending seeds for short trips to space helps scientists develop new crop varieties that can thrive in the changing climate and help feed the world's growing population.

At first glance they are identical to any other ears of wheat swaying in the wind all over the world. But the vast fields of crops in north-eastern China are no ordinary plants – they were created in outer space.

They are a variety known as Luyuan 502 and are China's second most widely grown type of wheat. The plants were bred from seeds that were flown into orbit 200 miles (340km) above the Earth's surface. Here, in the unique low gravity environment and outside the protective magnetic shield of our planet, they picked up subtle changes to DNA that gave them new qualities that made them more tolerant to drought and able to better resist certain diseases.

They are an example of a growing number of new varieties of important food crops that are being bred on spacecraft and space stations while orbiting our planet. Here they are subjected to microgravity and are bombarded by cosmic rays, which trigger the plants to mutate – a process known as space mutagenesis.

While some of the mutations leave the plants unable to grow, others can be advantageous. Some become hardier and able to withstand more extreme growing conditions while others produce more food from a single plant or grow faster or require less water. When brought back to Earth, seeds from these space-bred plants undergo careful screening and further breeding to create viable versions of popular crops.

In a world facing increasing pressure on agriculture due to climate change and vulnerable supply chains, which have underlined the need for crops to be grown closer to where they are eaten, some researchers now believe that space-breeding, also known as space mutagenesis, may help them to adapt crops to these new challenges.

The second most planted wheat crop in China is the Luyuan 502 mutant variety that was created using space mutagenesis (Credit: Chinese Academy of Agricultural Sciences)
The second most planted wheat crop in China is the Luyuan 502 mutant variety that was created using space mutagenesis (Credit: Chinese Academy of Agricultural Sciences)

"Space mutagenesis makes beautiful mutations," says Liu Luxiang, China's leading space mutagenesis expert and director of the National Center of Space Mutagenesis for Crop Improvement at the Institute of Crop Sciences of the Chinese Academy of Agricultural Sciences in Beijing.

Luyuan 502, for example, has an 11% higher yield than the standard wheat variety grown in China, a better tolerance to drought and stronger resilience against the most common wheat pests, according to the International Atomic Energy Agency, which coordinates international cooperation in the use of irradiation-based techniques for creation of new crop types.

"[Luyuan 502] is a real success story," says Liu. "It has a very high yield potential and adaptability. It can be cultivated in many different areas with different conditions."

This adaptability is what makes Luyuan 502 such a hit among farmers across China's vastly diverse agricultural landscapes and varied climate.

It is just one of more than 200 space-mutated crop varieties created in China over the past 30 years, according to Liu. In addition to wheat, Chinese scientists have produced space-bred rice, corn, soybeans, alfalfa, sesame, cotton, watermelons, tomatoes, sweet peppers and other types of vegetables.

China has been experimenting with space mutagenesis since 1987 and is the only country in the world consistently using the technique. Since then it has conducted dozens of missions to carry crop seeds into orbit. Chinese scientists released the first space-bred crop – a type of sweet pepper called Yujiao 1 – in 1990. Compared to conventional sweet pepper varieties grown in China, Yujiao 1 produces much bigger fruit and is more resistant to diseases, says Liu.

High-energy radiation in space can trigger mutations in seeds that can lead to improved and desirable traits in important crops such as rice (Credit: Li Xihua/VCG/Getty Images)
High-energy radiation in space can trigger mutations in seeds that can lead to improved and desirable traits in important crops such as rice (Credit: Li Xihua/VCG/Getty Images)

China's emergence as a global space power in recent decades has enabled it to send thousands of seeds into orbit. In 2006, the country shipped into orbit their largest batch ever – more than 250kg (551lbs) worth of seeds and microorganisms of 152 species – aboard the satellite Shijian 8. In May this year, 12,000 seeds including several types of grass, oats, alfalfa and fungi, returned from a six-month visit to China's Tianhe space station as part of the crewed Shenzhou 13 mission.

The Chinese even sent a batch of rice seeds for a lunar round-trip with the Chang'e-5 mission that put a lander on the surface of the Moon in November 2020. According to Chinese news reports, these lunar rice seeds successfully produced grain in laboratory after their return to Earth.

"We benefit from China's strong space programme," Liu says. "We can use recoverable satellites, high-altitude platforms but also manned spacecraft to send our seeds to space up to twice a year and use those space utilities for crop improvement."

The seeds are sent on trips lasting from just four days to several months. In this unusual environment, a number of changes can happen to seeds and plants. First, high energy solar and cosmic radiation can damage the genetic material in the seeds itself, leading to mutations or chromosomal aberrations that are passed onto future generations. The low gravity environment could also lead to other changes. Plants that germinate and are grown in microgravity show changes in cell shape and the organisation of structures within the cells themselves.

In most cases, Chinese scientists fly the seeds into space and then germinate them back on the ground once they are returned to Earth. The seedlings are then screened for useful traits that provide an advantage over more traditional crop varieties. The scientists are looking for changes that lead to bigger fruit, lower watering requirements, better nutrient profiles, resistance to high and low temperatures or resilience against disease. In some cases rare mutations can lead to breakthroughs in crop yield or resilience.

On Earth, we are protected from high-energy rays by the Earth's magnetic field and thick atmosphere, but in orbit, spacecraft and satellites are constantly exposed to this radiation
The most promising plants are bred further, until the researchers arrive at a substantially improved variant that can address the farmers’ needs.

China, however, although currently a leader in space mutagenesis, wasn't the first nation to experiment with space-breeding. The technique dates back to some early experiments conducted by US and Soviet scientists using carrot cells launched into orbit aboard the Soviet satellite Kosmos 782.

The approach relies on the same principles as nuclear mutagenesis, which has been around since the late 1920s. Nuclear mutagenesis speeds up the naturally occurring mutation processes in the DNA of living organisms by exposing them to radiation.

But while nuclear mutagenesis uses gamma rays, X-rays and ion beams from terrestrial sources, space mutagenesis relies upon the bombardment by cosmic rays that pepper space around our planet. On Earth, we are protected from those high-energy rays by the Earth's magnetic field and its thick atmosphere, but in orbit, spacecraft and satellites are constantly exposed to this radiation, which mostly comes from the Sun.

You might also like to read:

Why astronauts are printing organs in space
The trees grown from seeds that went to the Moon
The man growing lettuce for space salads
Both space and nuclear mutagenesis can help cut down the development times of new crop varieties by up to a half, according to Shoba Sivasankar, who leads the joint Plant Breeding and Genetics group of the International Atomic Energy Agency (IAEA) and the Food and Agriculture Organization of the United Nations (FAO).

The IAEA's nuclear laboratories in Seibersdorf, 21 miles (35km) south-east of Vienna, Austria, are the global hub and training centre for nuclear mutagenesis. Cooperating countries that don't possess their own nuclear facilities send their seeds, plant cuttings or seedlings to Sivasankar's team for irradiation.

"It only takes a couple of minutes to irradiate the seeds, but it requires sufficient knowledge and expertise," says Sivasankar. "Every variety has a different tolerance. Give the seeds a dose that is too high, keep them inside the irradiator too long, and you destroy them. They won't germinate. If you don't give them enough radiation, you won't generate enough mutations and end up with a generation that would look just like the predecessors."

By sending seeds into space, Chinese scientists are trying to breed stronger crops that can produce better yields back on Earth (Credit: Li Xihua/VCG/Getty Images)
By sending seeds into space, Chinese scientists are trying to breed stronger crops that can produce better yields back on Earth (Credit: Li Xihua/VCG/Getty Images)

The Joint FAO/IAEA Division of Nuclear Applications in Food and Agriculture, of which the Plant Breeding and Genetics group is a part, was founded in 1964. In the late 1920s, experiments using X-rays to induce mutations in wheat, maze, rice, oats and barley, sparked the interest of botanists all over the world. By the 1950s most developed nations had their nuclear breeding programmes, experimenting not only with X-rays but also with UV rays and gamma rays.

"At that time, there was a lot of effort in Europe and North America," says Sivasankar. "Many new varieties created with the help of nuclear mutagenesis were released. But in the past two to three decades, many of these countries abandoned the technique. Especially the US has turned to transgenic technologies that enable the insertion of pieces of foreign DNA into the genome of plants in the lab."

Nuclear mutagenesis, however, didn't disappear. Countries in the Asia Pacific region maintained the momentum, headed by the increasingly confident China. They continue filling the IAEA's database of mutant crop varieties, which today encompasses 3,300 newly developed crop varieties.

Sivasankar says that while for some of the poorer Asian countries, the high cost of transgenic technologies may have been the primary motivation for sticking with nuclear mutagenesis, there are more practical reasons to continue using the technique mostly abandoned by the West.

"For example, the US industrial farming sector prioritises a handful of traits such as insect and herbicide resistance," says Sivasankar. "The transgenic technologies work quite well for that. But in Asian countries the situation is very different."

Asian breeders produce seeds for many small farmers who work in extremely diverse environments. Modifying just one or two traits would not be enough.

"They need more complex traits, many of them related to the climate situation such as heat and drought tolerance or the ability to grow in nutrient-poor or saline soil," says Sivasankar. "That, in my opinion, cannot be achieved with transgenic technologies."

According to Liu and his team the world has to increase its production of vital cereals by 70% if it wants to feed an additional two billion people that are expected to live on the planet by 2050
China sees the effort to improve the genetic pool of its agriculture crops as a necessity. According to Liu and his team the world has to increase its production of vital cereals by 70% if it wants to feed an additional two billion people that are expected to live on the planet by 2050. The growing population in the Asia Pacific region is at the highest risk of suffering from food shortages, they say.

Through nuclear and space mutagenesis, China alone has developed and introduced over 800 new varieties, improving on all key characteristics compared to the original crops, according to the IAEA.

But one questions remains: what is the advantage of sending seeds to space when the same can be done in labs on the ground?

Liu admits that sending seeds to space costs more than sticking them into ground-based irradiators. Still, the space trips seem to provide clear benefits and frequently produce more interesting results.

"We actually see a higher frequency of useful mutations from space mutagenesis than from gamma rays," says Liu. "In space, the radiation intensity is considerably lower, but the seeds are exposed to it over a much longer period of time. What we call the linear energy transmission of the particles and the overall biological effect are higher in space and there is a much lower rate of damage to the seeds compared to those irradiated in labs."

In an irradiator, the seeds receive large doses of ionising – from 50-400 grays – over a period of a few seconds, says Liu. On the other hand, seeds on a weeklong space trip are exposed to only two milligrays. As a result, up to 50% of seeds don't survive the harsh ground-based treatment while almost all of the seeds flown in space usually germinate, he adds.

"All these techniques are very useful and are helping us solve some very real problems," says Liu. "There are too few opportunities to fly seeds to space. We can't rely only on that."

Nasa has been growing lettuce on the International Space Station in experiments it hopes will lead to fresh food for astronauts (Credit: Nasa/Alamy)
Nasa has been growing lettuce on the International Space Station in experiments it hopes will lead to fresh food for astronauts (Credit: Nasa/Alamy)

Now it appears there is renewed interest from other parts of the world in growing food in space. In November 2020, American commercial space services company NanoRacks announced plans to operate orbiting greenhouses. Their goal? To develop new crop varieties that would be better suited to feed the world as it faces worsening climate change.

For the endeavour, the company, known for dispatching small satellites from the International Space Station, partnered with the United Arab Emirates, a country with little arable land of its own, meaning it has to import much of the food it requires.

However, not all seeds return from space as fledgling super plants. A batch of lettuce seeds sent to the International Space Station by European scientists in 2020 grew slower after their return to Earth when compared to plants that had stayed on the ground.

Much of the research now being conducted on growing food while in space is aimed at helping astronauts feed themselves while on missions. Astronauts on the ISS, for example, have been harvesting romaine lettuce since 2015 and eating it, and a study published in 2020 found it was safe to eat, and could provide a valuable source of nutrients on long missions.

But while growing food for astronauts could prove invaluable as space agencies around the world set their sights on returning humans to the Moon and visiting other planets such as Mars, space food will perhaps be of even greater use to those of us who remain here on Earth.

--

[ 本帖最後由 Dr.Fat 於 2022-7-26 14:59 編輯 ]
Reply
#10
引起熱議:NASA 公開「黑洞」真實聲音,收錄 34 秒錄音片段!
https://hk.news.yahoo.com/nasa-%E9%BB%91...27888.html

[Image: 4490dab0-23b5-11ed-bdeb-a78c9be1db8c]
引起熱議:NASA 公開「黑洞」真實聲音,收錄 34 秒錄音片段!

關於宇宙的奧秘,一直以來都受到無數人的著迷,而太空之美近期也隨著 NASA 利用韋伯太空望遠鏡(James Webb Telescope)所拍攝的全彩而清晰影像讓我們一覽無遺(詳文點此),能夠將夢幻宇宙收藏,不過除了照片之外,近日 NASA 也公開了英仙座星系團的錄音片段,第一次能夠聽到「黑洞」的真實聲音。

在 NASA 曝光由詹姆斯韋伯太空望遠鏡所拍攝的全彩圖像後,被認為是至今最清晰的紅外圖像,同時更是對於宇宙最深的一次探索,另外也將它與過去服役 32 年的哈伯望遠鏡做對比(詳文點此),令人深深讚嘆科技的進步,而最近 NASA 再公開「黑洞」的聲音,原來並非靜悄悄而是如低沈的呢喃。

過往我們對於太空的知識理解在於,太空因為處於真空狀態因此沒有介質傳導聲波,所以會認為太空是無聲的,不過 NASA 發現英仙座星系團黑洞旁發出的壓力波與大量氣體,進而將這些數據經過聲波處理化,轉變為人耳可接收的頻率,讓我們終於可以聽到黑洞的聲音,聽完後你們有什麼感覺呢?一種妙不可言的全新體驗,也讓我們對於太空的認識更近一小步了。


美國太空總署稱首次發現太陽系外行星存在二氧化碳
https://news.rthk.hk/rthk/ch/component/k...220827.htm

美國太空總署表示,韋伯太空望遠鏡首次在太陽系外行星的大氣中,發現二氧化碳存在的明確證據。

太空總署在公報中介紹,這顆行星是一顆巨型氣態行星,距離地球約700光年,質量約為木星的四分之一,與土星差不多,直徑為木星的1.3倍,表面溫度約攝氏900度。

公報又說,哈勃望遠鏡等探測器,之前曾發現這顆行星的大氣中,存在水蒸氣、鈉及鉀,今次靠韋伯望遠鏡搭載的近紅外光譜儀,確認存在二氧化碳,有助了解行星的大氣組成成分,對研究行星的起源和演化過程非常重要。

[ 本帖最後由 KT150 於 2022-8-27 04:23 編輯 ]
Reply


Forum Jump:


Users browsing this thread: 1 Guest(s)